Math 111 Final Exam Form A

Section	Show all work or document calculator usage to receive	full credit
Section	Show all work of accument calculator asage to receive	Juli Cie

1. Determine whether the given pair of lines is parallel, perpendicular or neither. Show all work and give a reason for your answer.

$$\begin{cases} y = 4x - 5 \Rightarrow m = 4 \\ 4y = 8 - x \Rightarrow 4y = -x + 8 \Rightarrow 4z - 4x + 2 \Rightarrow m = -4 \end{cases}$$

 $\mathcal{M}_{\bullet} \cdot \mathcal{M}_{\bullet} = 4 \cdot (-\frac{1}{4}) = -1$ $\mathcal{I}_{\bullet} \cdot \mathcal{J}_{\bullet} \cdot \mathcal{J}_{\bullet}$ 2. Determine the equation of the line passing through (-3,7) and (-1,-5). Show all work. Express your answer in slope-intercept form.

3. a. Find the radius of the circle that passes through the point (3,7) and has its center at (-1,4). Show all

ork.

$$(\chi - h)^{2} + (y - K)^{2} = \gamma^{2}$$

 $(3 - (-1))^{2} + (7 - (4))^{2} = \gamma^{2}$
 $(3 + 9 = \gamma^{2})$

Radius: _____(1pt)

b. Find the equation of that circle. Express your answer in center-radius form.

Equation:
$$(\chi + 1)^2 + (\chi - 4)^2 = 25$$
 (2pts)

4. Solve analytically. Show all work. Express your answer in interval notation.

$$2(x-4) < 3-5(2x+1)$$
 $2x-8 < 3-10x-5$
 $2x-8 < -2-10x$
 $12x < 6$
 $x < \frac{1}{2}$

- 5. Find the point that is symmetric to (7,-3):
 - a. With respect to the x-axis (7,3) (1pt)
 - b. With respect to the y-axis (-7, -3) (1pt)
 - c. With respect to the origin (-7, 3) (1pt)
- 6. Graph the piecewise function. (3pts)

$$f(x) = \begin{cases} 2x-1 & \text{for } x < 0 \\ 3 & \text{for } 0 \le x < 4 \\ -\frac{1}{2}x & \text{for } x \ge 4 \end{cases}$$

$$\begin{array}{c|c} \chi & f(\alpha) = 3, \text{ for } 0 < \alpha < 4 \\ \bullet & 0 & 3 \\ \circ & 4 & 3 \end{array}$$

7. Given $f(x) = 3x^2 - 6x + 4$ and $g(x) = x^2 - 3x - 10$, find (f - g)(x) and state the domain of (f - g)(x) in interval notation.

$$(f-g)(x) = f(x) - g(x)$$

$$= (3x^{2} - 6x + 4) - (x^{2} - 3x - 10) \qquad (f-g)(x) = \underline{2x^{2} - 3x + 14}$$

$$= (3x^{2} - 6x + 4) + (-x^{2} + 3x + 10)$$

$$= 2x^{2} - 3x + 14$$
Domain of $(f-g)(x)$: $(-\infty, \infty)$

$$(f-g)(x) = 2x^2 - 3x + 14$$
 (2pts)

8. Given
$$f(x) = 3x$$
 and $g(x) = 2x^2 - 4x - 7$, evaluate $(g \circ f)(x)$ and simplify.

$$(9 \circ f)(x) = 9(f(x)) = 9(3x)$$

$$= 2(3x)^2 - 4(3x) - 7$$

$$= 2 \cdot 9x^2 - 12x - 7$$

$$= 18x^2 - 12x - 7$$

$$18x^2 - 12x - 7$$
 (2pts)

9. Determine the domain of the function. Express your answer in interval notation.

$$f(x) = \sqrt{x+2}$$

$$\cancel{x+2} \geqslant 0$$

$$\cancel{x} \geqslant -2$$

10. Write an equation for a function that has the shape of y = |x| that is shifted left 3 units, reflected about the x-axis, and shifted down 4 units.

$$y=|x| \rightarrow y=|x+3| \rightarrow y=-|x+3| \rightarrow y=-|x+3|-4$$
 (3pts)

11. For the graph of $f(x) = -2x^2 - 24x - 64$, state the coordinates of the vertex.

$$-\frac{b}{2a} = -\frac{-24}{2(-a)} = -6$$

$$f(-6) = -2(-6)^{2} - 24(-6) - 64 = 8$$

12. Find the EXACT zeros of $f(x) = x^2 - 4x - 41$ algebraically.

$$x^{2}-4x-41=0$$

$$x^{2}-4x+4=41+4$$

$$(x-2)^{2}=45$$

$$x-2=\pm\sqrt{45}$$

$$\chi^{2}-4\chi-41=0 \qquad \text{or} \quad \alpha=1, \ b=-4, \ C=-41 \qquad \beta=\frac{4\pm\sqrt{16+164}}{2}$$

$$\chi^{2}-4\chi+4=41+4 \qquad \chi=\frac{-b\pm\sqrt{b^{2}-4ac}}{2a} \qquad =\frac{4\pm\sqrt{180}}{2}$$

$$(\chi-2)^{2}=45 \qquad =\frac{-(-4)\pm\sqrt{(-4)^{2}-4+1(-4)}}{2(1)} \qquad =\frac{4\pm615}{2}=2\pm315$$

13. Solve and write interval notation for the solution set: |x+4| > 5

$$\chi + 4 > 5$$
 or $\chi + 4 < -5$

$$\chi > 1 / \chi < -9 / \chi$$

$$(-\infty, -9) \cup (1, \infty)$$
 (3pts)

14. Find the exact solution(s): $\sqrt{x+7} = x+1$

15. Find the exact solution(s): $\left(\frac{2}{x+5} + \frac{1}{x-5} = \frac{16}{(x+5)(x-5)}\right) \cdot (x+5)(x-5)$

$$2(x-5)+1(x+5)=16$$
 ///
 $2x-10+x+5=16$ /
 $3x-5=16$
 $3x=21$
 $x=7$ /

 {7) (3pts)

16. Determine the leading term, the leading coefficient, and the degree of the polynomial. Then classify the polynomial function as constant, linear, quadratic, cubic, or quartic.

$$f(x) = 4x^3 - 7x^2 + \frac{2}{3}x - 6$$

Leading term: $4x^3$ (1pt)

Leading coefficient: 4 (1pt)

Degree of the polynomial: 3 (1pt)

Classify the function: <u>Cubic</u> (1pt)

17. a. Graph the function using the given viewing window [-10, 10, -30, 20]. Determine all relative maxima and minima of the function. Round answers to two decimal places.

$$f(x) = 0.2x^3 - 0.2x^2 - 5x - 4$$

Maxima: 4,13 (1pt)

b. Determine the interval(s) where f(x) is increasing. Write your answer in interval notation.

Increasing: $(-\infty, -2,57)$ $U(3,24, \infty)$ (1pt)

18. Data on airline revenue from add-on fees are listed in the following table. Use a graphing calculator to fit a regression line to the data, and let x=0 represent the year 2010.

Year, x	Airline Revenue from Add-On Fees (in billions), y
	\ b
2010, 0	\$22.6
2011, 1	\$32.5
2012, 2	\$36.1
2013, 3	\$42.6
2014, 4	\$49.9

$$y = 6.47x + 23.8$$
 (2pts)

Revenue in 2025:
$$\approx #120.9 \text{ billion}$$
 (2pts)

19. The data in the following table shows healthcare costs in the U.S. between 1990 and 2013.

Year, x	Cost (per person), y
1990, 0	\$1,947
1996, 6	\$3,157
2002, 12	\$4,330
2007, 17	\$5,774
2013, 23	\$7,114

a) Using your graphing calculator, find the R^2 value for each model. Round answers to 4 decimal places, and let x= 0 represent year 1990. (2pts)

Linear: 0.9955

- b) Based on the R^2 value, which function is the best fit? Quartit (1pt)
- c) Using your graphing calculator, find the leading term for each model. Round answers to 4 decimal places.

Linear: 226,7737X (2pts)

Quartic: -0.059924

d) Based on the end-behavior of each model, is the function you chose in part b) appropriate? Give a reason for your answer.

No. The end behavior of the graph is & .

This implies that costs will drop in the future. But the healthcare costs would keep rusing overtime.

- 20. For the polynomial function $f(x) = x^4 2x^3 + 34x^2 98x 735$,
 - a) Find the zeros; that is, solve f(x) = 0.

From the graph of flx), -3 and 5 are rational zeros of flx).

$$\chi^{2} + 49 = 0$$

$$\chi^{2} = -49$$

$$\chi = \pm 7\lambda$$

b) Factor f(x) into linear factors.

$$f(x) = (x+3)(x-5)(x-7i)(x+7i)$$

- 21. For the function $f(x) = \frac{2x+9}{x-3}$, find each of the following. If it doesn't exist, then answer "none."
 - a. Domain in interval notation.

 $(-\infty,3)U(3,\infty)$

b. Equation of the vertical asymptote:

X=3 (1pt)

c. Equation of the horizontal asymptote:

4=2 (1pt)

d. Equation of the oblique asymptote:

none

- e. x-intercept(s) as ordered pairs:
- $(-\frac{9}{3},0)$ (1pt)

- y intercept as an ordered pair:
- $f(0) = \frac{9}{3} = -3$
- (0,-3) (1pt)

$$\frac{x-3}{x+2} \le 0$$

crétical values: -2, 3

(4pts)

23. Find $\log_3 18$ using the change-of-base formula and your calculator. Round to four decimal places.

24. Solve the exponential equation algebraically. Write solution(s) in exact form.

$$3^{4x+2} = 27$$
 $3^{4x+2} = 3^3$
 $4x+2=3$
 $4x+2=3$
 $4x=1$
 $x=4$

25. Solve the logarithmic equations algebraically. Write solution(s) in exact form.

$$\log_{3}(x+5) + \log_{3}(x-5) = 2$$

$$\log_{3}(x+5)(x-5) = 2$$

$$3^{2} = (x+5)(x-5)$$

$$9 = x^{2} - 25$$

$$34 = x^{2}$$

$$x = \sqrt{34} \text{ or } x = \sqrt{34}$$

26. Jennifer recently graduated and landed a new job earning \$34,000. Even though retirement is not in her immediate future, she remembers her math teacher stressing the benefits of investing over a long period of time. Jennifer decided to invest \$3,400. Assuming that she earns 5% compounded quarterly, how much

money will Jennifer have in her account upon her retirement 42 years later? $B = P\left(1 + \frac{r}{n}\right)^{n}$

$$B = 3400(1 + \frac{0.05}{4})^{4(42)}$$

$$\approx #27,405,91$$

27. The population of Jackson, Missouri was approximately 9,500 in 1990 and the growth rate was 2.1% per

year. When will the population of Jackson, Missouri was approximately 9,300 in 1990 and the growth rate was 2.1% per year. When will the population of Jackson be 20,500?
$$P(t) = P_0 e^{kt}$$

$$P(t) = P_0 e^{kt}$$

$$20,500 = 9500e$$

$$20,500 = 9500e$$

$$1 = ln(\frac{205}{95}) = 0.021t$$

$$205 = e^{0.021t}$$

$$206 = ln e^{0.021t}$$

$$206 = ln e^{0.021t}$$

$$207 = ln e^{0.021t}$$

$$208 = ln e^{0.021t}$$

$$209 = ln e^{$$

28. Solve the following nonlinear system, giving the solution(s) as ordered pair(s).

$$\begin{cases} y = x^{2} + 6x + 9 & \Rightarrow \\ x + y = 3 \Rightarrow 0 = 3 - 2 & \Rightarrow \\ 3 - x = x^{2} + 6x + 9 & \text{If } x = -1, \ y = 3 - (-1) = 4 & (-1, 4) \\ 0 = x^{2} + 7x + 6 & \text{If } x = -6, \ y = 3 - (-6) = 9 & (-6, 9) \\ 0 = (x + 1)(x + 6) & (-1, 4), (-6, 9) & (4pts) \end{cases}$$

29. Use two variables to solve this problem and show your work: Kathy inherited \$3,000 and invested it in two municipal bonds that pay 2% and 4% simple interest. The annual interest is \$100. Find the amount invested at each rate.

Suppose the following matrix equation is true. Find x and y.

$$\begin{bmatrix} 5 & (\frac{x}{2}) \\ (2y) & -8 \end{bmatrix} = \begin{bmatrix} 5 & (3) \\ (-2) & -8 \end{bmatrix} \qquad \frac{2}{3} = 3 \Rightarrow \chi = 6$$

$$2\chi = -2 \Rightarrow \chi = -1$$